WordprocessingML Reference Material - Table of Contents
[bookmark: _Toc147896468_1][bookmark: TOCSection207_1]Roundtripping Alternate Content
Office Open XML defines a mechanism for the storage of content which is not defined by this Office Open XML Standard, for example extensions developed by future software applications which leverage the Open XML formats. This mechanism allows for the storage of a series of alternative representations of content, of which the consuming application should use the first alternative whose requirements are met.
[Example: Consider an application which creates a new paragraph property intended to make the colors of its text change colors randomly when it is displayed. This functionality is not defined in this Office Open XML Standard, and so the application might choose to create an alternative representation setting a different manual color on each character for clients which do not understand this extension using an AlternateContent block as follows:
<ve:AlternateContent xmlns:ve="…">
 <ve:Choice Requires="colors" xmlns:colors="urn:randomTextColors">
 <w:p>
 <w:pPr>
 <colors:random colors:val="true" />
 </w:pPr>
 <w:r>
 <w:t>Random colors!</w:t>
 </w:r>
 </w:p>
 </ve:Choice>
 <ve:Fallback>
 <w:p>
 <w:r>
 <w:rPr>
 <w:color w:val="FF0000" />
 </w:rPr>
 <w:t>R</w:t>
 </w:r>
 <w:r>
 <w:rPr>
 <w:color w:val="00FF00" />
 </w:rPr>
 <w:t>a</w:t>
 </w:r>
 …
 </w:p>
 </ve:Fallback>
</ve:AlternateContent>
The Choice element that requires the new color extensions uses the random element in its namespace, and the Fallback element allows clients that do not support this namespace to see an appropriate alternative representation. end example]
These alternate content blocks may occur at any location within a WordprocessingML document, and applications shall handle and process them appropriately (taking the appropriate choice).
However, WordprocessingML does not explicitly define a set of locations where applications shall attempt to store and roundtrip all non-taken choices whenever possible. This behavior is therefore application-defined.
[Example: If an application does not understand the colors extension, the resulting file (if alternate choices are to be preserved would appear as follows:
<ve:AlternateContent xmlns:ve="…">
 <ve:Choice Requires="colors" xmlns:colors="urn:randomTextColors">
 …
 </ve:Choice>
 <ve:Fallback>
 …
 </ve:Fallback>
</ve:AlternateContent>
The file would then appear as follows after the choice is processed:
<w:p>
 <w:r>
 <w:rPr>
 <w:color w:val="FF0000" />
 </w:rPr>
 <w:t>R</w:t>
 </w:r>
 <w:r>
 <w:rPr>
 <w:color w:val="00FF00" />
 </w:rPr>
 <w:t>a</w:t>
 </w:r>
 …
</w:p>
The state of the alternate choices (preserved or not) is dependent on the application hosting the file. Preserving the content involves storing each non-taken choice while the file is being edited, and writing out the file with an AlternateContent block when it is resaved. end example]
